Strictly positive definite functions on compact abelian groups
نویسندگان
چکیده
منابع مشابه
Positive Positive-definite Functions and Measures on Locally Compact Abelian Groups
In the paper [1] we gave a cohomological interpretation of Tate’s Riemann-Roch formula using some new harmonic analysis objects, ghost-spaces. When trying to investigate these objects in general, we realized the importance of functions and measures on locally compact abelian groups that are both positive and positive-definite at the same time. It looks like this class of functions and measures ...
متن کاملQuaternion-valued positive definite functions on locally compact Abelian groups and nuclear spaces
In this talk we introduce and study quaternion-valued positive definite functions on locally compact Abelian groups, real countably Hilbertian nuclear spaces and on the space of countably infinite tuples of real numbers endowed with the Tychonoff topology. In particular, we prove a quaternionic version of the Bochner-Minlos theorem. We will see that in all these various settings the integral re...
متن کاملStrictly Hermitian Positive Definite Functions
Let H be any complex inner product space with inner product < ·, · >. We say that f : | C → | C is Hermitian positive definite on H if the matrix ( f(< z,z >) )n r,s=1 (∗) is Hermitian positive definite for all choice of z, . . . ,z in H, all n. It is strictly Hermitian positive definite if the matrix (∗) is also non-singular for any choice of distinct z, . . . ,z in H. In this article we prove...
متن کاملStrictly Positive Definite Functions on Spheres
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملStrictly positive definite reflection invariant functions
Strictly positive definite functions are used as basis functions for approximation methods in various contexts. Using a group theoretic interpretation of Bochner’s Theorem we give a sufficient condition for strictly positive definite functions on a semi-direct product which are invariant under the natural action of a given subgroup. As an application strictly positive definite, reflection invar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2011
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-2010-10533-6